How to Detect Linear Dependence on the Copula Level?
نویسندگان
چکیده
In many practical situations, the dependence between the quantities is linear or approximately linear. Knowing that the dependence is linear simplifies computations; so, is is desirable to detect linear dependencies. If we know the joint probability distribution, we can detect linear dependence by computing Pearson’s correlation coefficient. In practice, we often have a copula instead of a full distribution; in this case, we face a problem of detecting linear dependence based on the copula. Also, distributions are often heavy-tailed, with infinite variances, in which case Pearson’s formulas cannot be applied. In this paper, we show how to modify Pearson’s formula so that it can be applied to copulas and to heavy-tailed distributions. 1 Detecting Linear Dependence: Formulation of the Problem Locally, linear dependencies are ubiquitous. Dependencies between quantities are often described by smooth (even analytical) functions y = f(x1, . . . , xn). An analytical function can be expanded in Taylor series around each point x = (x (0) 1 , . . . , x (0) n ):
منابع مشابه
Modeling the Dependency Structure between Stocks of Chemical Products Return, Oil Price and Exchange Rate Growth in Iran; an Application of Vine Copula
The main objective of this study is modeling the dependency structure between the returns of oil markets, exchange rate and stocks of chemical products in Iran. For this purpose, the theory of Vine Copula functions is used to investigate the dependency structure. In addition to consider a linear relationship between financial markets in Iran, the nonlinear dependency structure of these markets ...
متن کاملGJR-Copula-CVaR Model for Portfolio Optimization: Evidence for Emerging Stock Markets
Abstract T his paper empirically examines the impact of dependence structure between the assets on the portfolio optimization, composed of Tehran Stock Exchange Price Index and Borsa Istanbul 100 Index. In this regard, the method of the Copula family functions is proposed as powerful and flexible tool to determine the structure of dependence. Finally, the impact of the dep...
متن کاملDeveloping Non-linear Dynamic Model to Estimate Value at Risk, Considering the Effects of Asymmetric News: Evidence from Tehran Stock Exchange
Empirical studies show that there is stronger dependency between large losses than large profit in financial market, which undermine the performance of using symmetric distribution for modeling these asymmetric. That is why the assuming normal joint distribution of returns is not suitable because of considering the linier dependence, and can be lead to inappropriate estimate of VaR. Copula theo...
متن کاملRisk Management in Oil Market: A Comparison between Multivariate GARCH Models and Copula-based Models
H igh price volatility and the risk are the main features of commodity markets. One way to reduce this risk is to apply the hedging policy by future contracts. In this regard, in this paper, we will calculate the optimal hedging ratios for OPEC oil. In this study, besides the multivariate GARCH models, for the first time we use conditional copula models for modelling dependence struc...
متن کاملA Copula-based Quantile Model for Crude oil Return-Volatility Dependence Modelling: Case of Iran Heavy Oil
The main purpose of this study is to investigate the relationship between Iran’s heavy crude oil price returns and volatility dependence using the Copula-based quantile model (CQM). CQM is an efficient tool for analyzing nonlinear time series models as it has no need for initial assumptions. We use monthly data from January 1990 to December 2019. We use the Hadrick-Prescott filter to calculate...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013